Em uma experiência aleatória foi lançado duas vezes um dado. Considerando que o dado é equilibrado, qual a probabilidade de:
Respostas corretas: a) 1/36, b) 11/36, c) 1/9 e d) 1/12.
Para resolver o exercício devemos considerar que a probabilidade da ocorrência de um determinado evento, é dada por:
P (A) = Número de casos favoráveis / Número de casos possíveis
Na tabela 1 indicamos os pares resultantes dos lançamentos consecutivos do dado. Note que temos 36 casos possíveis.
Tabela 1:
1.º lançamento-> 2.º lançamento | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
1 | (1,1) | (1,2) | (1,3) | (1,4) | (1,5) | (1,6) |
2 | (2,1) | (2,2) | (2,3) | (2,4) | (2,5) | (2,6) |
3 | (3,1) | (3,2) | (3,3) | (3,4) | (3,5) | (3,6) |
4 | (4,1) | (4,2) | (4,4) | (4,4) | (4,5) | (4,6) |
5 | (5,1) | (5,2) | (5,3) | (5,4) | (5,5) | (5,6) |
6 | (6,1) | (6,2) | (6,3) | (6,4) | (6,5) | (6,6) |
a) Na tabela 1 observamos que existe apenas 1 resultado que cumpre a condição indicada (5,4). Assim, temos que em um total de 36 casos possíveis, apenas 1 é um caso favorável.
P (A) = 1/36
b) Os pares que atendem a condição de pelo menos um número 5 são: (1,5);(2,5);(3,5);(4,5);(5,1);(5,2);(5,3);(5,4);(5,5);(5,6);(6,5). Assim, temos 11 casos favoráveis.
P (A) = 11/36
c) Na tabela 2 representamos a soma dos valores encontrados.
Tabela 2:
1.º lançamento-> 2.º lançamento | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
2 | 3 | 4 | 5 | 6 | 7 | 8 |
3 | 4 | 5 | 6 | 7 | 8 | 9 |
4 | 5 | 6 | 7 | 8 | 9 | 10 |
5 | 6 | 7 | 8 | 9 | 10 | 11 |
6 | 7 | 8 | 9 | 10 | 11 | 12 |
Observando os valores da soma na tabela 2 vemos que temos 4 casos favoráveis da soma ser igual a 5. Assim a probabilidade será dada por:
P (A) = 4/36 = 1/9
d) Usando ainda a tabela 2 observamos que temos 3 casos em que a soma é igual ou menor que 3. A probabilidade neste caso será dada por:
P (A) = 3/36 = 1/12
0 Comentários