Citologia - Continuação
Formação do acrossomo do espermatozóide
O aparelho de Golgi desempenha um papel importante na formação dos espermatozóides. Estes contêm bolsas repletas de enzimas digestivas, que irão perfurar as membranas do óvulo e permitir a fecundação. A bolsa de enzimas do espermatozóide maduro, originada no aparelho de Golgi, é o acrossomo (do grego acros, alto, topo, e somatos, corpo), termo que significa “corpo localizado no topo do espermatozóide”.
Formação da lamela média em células vegetais
Nas células vegetais o complexo de Golgi participa ativamente da formação da lamela média, a primeira membrana que separa duas células recém-originadas na divisão celular. Os dictiossomos acumulam o polissacarídeo pectina, que é eliminado entre as células irmãs recém formadas, constituindo a primeira separação entre elas e, mais tarde, a lâmina que as mantém unidas.
Lisossomos
Estrutura e origem dos lisossomos
Os lisossomos (do grego lise, quebra, destruição) são bolsas membranosas que contêm enzimas capazes de digerir substâncias orgânicas. Com origem no aparelho de Golgi, os lisossomos estão presentes em praticamente todas as células eucariontes. As enzimas são produzidas no RER e migram para os dictiossomos, sendo identificadas e enviadas para uma região especial do aparelho de Golgi, onde são empacotadas e liberadas na forma de pequenas bolsas.
A digestão intracelular
Os lisossomos são organelas responsáveis pela digestão intracelular. As bolsas formadas nafagocitose e na pinocitose, que contêm partículas capturadas no meio externo, fundem-se aos lisossomos, dando origem a bolsas maiores, onde a digestão ocorrerá.
Vacúolos digestivos
As bolsas originadas pela fusão de lisossomos com fagossomos ou pinossomos são denominadas vacúolos digestivos; em seu interior, as substâncias originalmente presentes nos fagossomos ou pinossomos são digeridas pelas enzimas lisossômicas.
À medida que a digestão intracelular vai ocorrendo, as partículas capturadas pelas células são quebradas em pequenas moléculas que atravessam a membrana do vacúolo digestivo, passando para o citosol. Essas moléculas serão utilizadas na fabricação de novas substâncias e no fornecimento de energia à célula.
Eventuais restos do processo digestivo, constituídos por material que não foi digerido, permanecem dentro do vacúolo, que passa a ser chamado vacúolo residual.
Muitas célula eliminam o conteúdo do vacúolo residual para o meio exterior. Nesse processo, denominado clasmocitose, o vacúolo residual encosta na membrana plasmática e fundem-se com ela, lançando seu conteúdo para o meio externo.
|
Autofagia
Todas as células praticam autofagia (do grego autos, próprio, e phagein, comer), digerindo partes de si mesmas com o auxílio de seus lisossomos. Por incrível que pareça, a autofagia é uma atividade indispensável à sobrevivência da célula.
Em determinadas situações, a autofagia é uma atividade puramente alimentar. Quando um organismo é privado de alimento e as reservas do seu corpo se esgotam, as células, como estratégia de sobrevivência no momento de crise, passam a digerir partes de si mesmas.
No dia-a-dia da vida de uma célula, a autofagia permite destruir organelas celulares desgastadas e reaproveitar alguns de seus componentes moleculares.
O processo da autofagia se inicia com a aproximação dos lisossomos da estrutura a ser eliminada. Esta é cercada e envolvida pelos lisossomos, ficando contida em uma bolsa repleta de enzimas denominada vacúolo autofágico.
Através da autofagia, uma célula destrói e reconstrói seus constituintes centenas ou até milhares de vezes. Uma célula nervosa do cérebro, por exemplo, formada em nossa vida embrionária, tem todos os seus componentes (exceto os genes) com menos de um mês de idade. Uma célula de nosso fígado, a cada semana, digere e reconstrói a maioria de seus componentes.
Na silicose (“doença dos mineiros”), que ataca os pulmões ocorre a ruptura dos lisossomos de células fagocitárias (macrófagos), com conseqüente digestão dos componentes e morte celular.
Certas doenças degenerativas do organismo humano são creditadas a liberação de enzimas lisossômicas dentro da célula; isso aconteceria, por exemplo, em certos casos de artrite, doença das articulações ósseas.
Peroxissomos
Peroxissomos são bolsas membranosas que contêm alguns tipos de enzimas digestivas. Sua semelhança com os lisossomos fez com que fossem confundidos com eles até bem pouco tempo. Entretanto, hoje se sabe que os peroxissomos diferem dos lisossomos principalmente quanto ao tipo de enzimas que possuem.
Os peroxissomos, além de conterem enzimas que degradam gorduras e aminoácidos, têm também grandes quantidades da enzima catalase.
A catalase converte o peróxido de hidrogênio, popularmente conhecido como água oxigenada (H2O2), e água e gás oxigênio. A água oxigenada se forma normalmente durante a degradação de gorduras e de aminoácidos, mas, em grande quantidade, pode causar lesões à célula.
2 H2O2 + Enzima Catalase → 2 H2O + O2
|
Apesar das descobertas recentes envolvendo os peroxissomos, a função dessas organelas no metabolismo celular ainda é pouco conhecida. Entre outras funções, acredita-se que participem dos processos de desintoxicação da célula.
Glioxissomos
Em vegetais, as células das folhas e das sementes em germinação possuem peroxissomos especiais, conhecidos como glioxissomos. Nas células das folhas, essas estruturas atuam em algumas reações do processo de fotossíntese, relacionadas à fixação do gás carbônico. Nas sementes, essas organelas são importantes na transformação de ácidos graxos em substâncias de menor tamanho, que acabarão sendo convertidas em glicose e utilizadas pelo embrião em germinação.
Citoesqueleto
Quando se diz que o hialoplasma é um fluido viscoso, fica-se com a impressão de que a célula animal tem uma consistência amolecida e que se deforma a todo o momento. Não é assim.
Um verdadeiro “esqueleto” formado por vários tipos de fibras de proteínas cruza a célula em diversas direções, dando-lhe consistência e firmeza.
Essa “armação” é importante se lembrarmos que a célula animal é desprovida de uma membrana rígida, como acontece com a membrana celulósica dos vegetais.
Entre as fibras protéicas componentes desse “citoesqueleto” podem ser citados os microfilamentos de actina, os microtúbulos e os filamentos intermediários.
Os microfilamentos são os mais abundantes, constituídos da proteína contráctil actina e encontrados em todas as células eucarióticas. São extremamente finos e flexíveis, chegando a ter 3 a 6 nm (nanômetros) de diâmetro, cruzando a célula em diferentes direções , embora concentram-se em maior número na periferia, logo abaixo da membrana plasmática. Muitos movimentos executados por células animais e vegetais são possíveis graças aos microfilamentos de actina.
Os microtúbulos, por sua vez, são filamentos mais grossos, de cerca de 20 a 25 nm de diâmetro, quefuncionam como verdadeiros andaimes de todas as células eucarióticas. São, como o nome diz, tubulares, rígidos e constituídos por moléculas de proteínas conhecidas como tubulinas, dispostas helicoidalmente, formando um cilindro. Um exemplo, desse tipo de filamento é o que organiza o chamado fuso de divisão celular. Nesse caso, inúmeros microtúbulos se originam e irradiam a partir de uma região da célula conhecida como centrossomo (ou centro celular) e desempenham papel extremamente importante na movimentação dos cromossomos durante a divisão de uma célula.
Outro papel atribuído aos microtúbulos é o de servir como verdadeiras “esteiras” rolantes que permitem o deslocamento de substâncias, de vesículas e de organóides como as mitocôndrias e cloroplastos pelo interior da célula. Isso é possível a partir da associação de proteínas motoras com os microtúbulos.
Essas proteínas motoras ligam-se de um lado, aos microtúbulos e, do outro, à substância ou organóide que será transportado, promovendo o seu deslocamento.
Por exemplo, ao longo do axônio (prolongamento) de um neurônio, as proteínas motoras conduzem, ao longo da “esteira” formada pelos microtúbulos, diversas substâncias para as terminações do axônio e que terão importante participação no funcionamento da célula nervosa.
|
Filamentos intermediários
Os filamentos intermediários são assim chamados por terem um diâmetro intermediário – cerca de 10 nm – em relação aos outros dois tipos de filamentos protéicos.
Nas células que revestem a camada mais externa da pele existe grande quantidade de um tipo de filamento intermediário chamado queratina. Um dos papeis desse filamento é impedir que as células desse tecido se separem ou rompam ao serem submetidas, por exemplo, a um estiramento.
Além de estarem espalhadas pelo interior das células, armando-as, moléculas de queratina promovem uma “amarração” entre elas em determinados pontos, o que garante a estabilidade do tecido no caso da ação de algum agente externo que tente separá-las. Esse papel é parecido ao das barras de ferro que são utilizadas na construção de uma coluna de concreto. Outras células possuem apreciável quantidade de outros filamentos intermediários. É o caso das componentes dos tecidos conjuntivos e dos neurofilamentos encontrados no interior das células nervosas.
Resumo
Os centríolos
Os centríolos são organelas NÃO envolvidas por membrana e que participam do progresso de divisão celular. Nas células de fungos complexos, plantas superiores (gimnospermas e angiospermas) e nematóides não existem centríolos. Eles estão presentes na maioria das células de animais, algas e vegetais inferiores como as briófitas (musgos) e pteridófitas (samambaias).
Estruturalmente, são constituídos por um total de nove trios de microtúbulos protéicos, que se organizam em cilindro.
São autoduplicáveis no período que precede a divisão celular, migrando, logo a seguir, para os pólos opostos da célula.
Uma das providências que a fábrica celular precisa tomar é a construção de novas fábricas, isto é, a sua multiplicação. Isso envolve uma elaboração prévia de uma serie de “andaimes” protéicos, o chamado fuso de divisão, formado por inúmeros filamentos de microtúbulos.
Embora esses microtúbulos não sejam originados dos centríolos e sim de uma região da célula conhecido como centrossomo, é comum a participação deles no processo de divisão de uma célula animal. Já em células de vegetais superiores, como não existem centríolos, sua multiplicação se processa sem eles.
|
Os Cílios e Flagelos
São estruturas móveis, encontradas externamente em células de diversos seres vivos. Os cílios são curtos e podem ser relacionados à locomoção e a remoção de impurezas. Nas células que revestem a traquéia humana, por exemplo, os batimentos ciliares empurram impurezas provenientes do ar inspirado, trabalho facilitado pela mistura com o muco que, produzido pelas células da traquéia, lubrifica e protege a traquéia. Em alguns protozoários, por exemplo, o paramécio, os cílios são utilizados para a locomoção.
Os flagelos são longos e também se relacionam a locomoção de certas células, como a de alguns protozoários (por exemplo, o tripanosssomo causador da doença de Chagas) e a do espermatozóide.
Em alguns organismos pluricelulares, por exemplo, nas esponjas, o batimento flagelar cria correntes de água que percorrem canais e cavidades internas, trazendo, por exemplo, partículas de alimento.
Estruturalmente, cílios e flagelos são idênticos. Ambos são cilíndricos, exteriores as células e cobertos por membrana plasmática. Internamente, cada cílio ou flagelo é constituído por um conjunto de nove pares de microtúbulos periféricos de tubulina, circundando um par de microtúbulos centrais. É a chamada estrutura 9 + 2.
Tanto os cílios como flagelos são originados por uma região organizadora no interior da célula, conhecida como corpúsculo basal. Em cada corpúsculo basal há um conjunto de nove trios de microtúbulos (ao invés de duplas, como nos cílios e flagelos), dispostos em círculo. Nesse sentido, a estrutura do corpúsculo basal é semelhante à de um centríolo.
Mitocôndrias
Estrutura e função das mitocôndrias
As mitocôndrias estão imersas no citosol, entre as diversas bolsas e filamentos que preenchem o citoplasma das células eucariontes. Elas são verdadeiras “casas de força” das células, pois produzem energia para todas as atividades celulares.
As mitocôndrias foram descobertas em meados do século XIX, e, durante décadas, sua existência foi questionada por alguns citologistas. Somente em 1890 foi demonstrada, de modo incontestável, a presença de mitocôndrias no citoplasma celular. O termo “mitocôndria” (do grego, mitos, fio, e condros, cartilagem) surgiu em 1898, possivelmente como referência ao aspecto filamentoso e homogêneo (cartilaginoso) dessas organelas em alguns tipos de células, quando observadas ao microscópio óptico.
As mitocôndrias, cujo número varia de dezenas até centenas, dependendo do tipo de célula, estão presentes praticamente em todos os seres eucariontes, sejam animais, plantas, algas, fungos ou protozoários.
Estrutura interna das mitocôndrias
As mitocôndrias são delimitadas por duas membranas lipoprotéicas semelhantes às demais membranas celulares. Enquanto a membrana externa é lisa, a membrana interna possui inúmeras pregas – as cristas mitocondriais – que se projetam para o interior da organela.
A cavidade interna das mitocôndrias é preenchida por um fluido denominado matriz mitocondrial, onde estão presentes diversas enzimas, além de DNA e RNA e pequenos ribossomos e substâncias necessárias à fabricação de determinadas proteínas.
A respiração celular
No interior das mitocôndrias ocorre a respiração celular, processo em que moléculas orgânicas de alimento reagem com gás oxigênio (O2), transformando-se em gás carbônico (CO2) e água (H2O) e liberando energia.
C6H12O6 + O2 -> 6 CO2 + 6 H2O + energia |
A energia liberada na respiração celular é armazenada em uma substância chamada ATP (adenosina trifosfato), que se difunde para todas as regiões da célula, fornecendo energia para as mais diversas atividades celulares. O processo de respiração celular será melhor explicado na seção de Metabolismo energético.
A origem das mitocôndrias
Toda mitocôndria surge da reprodução de uma outra mitocôndria. Quando a célula vai se dividir, suas mitocôndrias se separam em dois grupos mais ou menos equivalentes, que se posicionam em cada um dos lados do citoplasma.
Ao final da divisão cada um dos grupos fica em uma célula-filha. Posteriormente, no decorrer do crescimento das células, as mitocôndrias se duplicam e crescem, restabelecendo o número original.
As mitocôndrias do espermatozóide penetram no óvulo durante a fecundação e degeneram-se logo em seguida, portanto, as mitocôndrias presentes na célula-ovo são originárias exclusivamente da mãe. As mitocôndrias ovulares, que se multiplicam sempre que a célula se reproduz, são as ancestrais de todas, as mitocôndrias presentes em nossas células.
Muitos cientistas estão convencidos de que as mitocôndrias são descendentes de seres procariontes primitivos que um dia se instalaram no citoplasma das primeiras células eucariontes. Existem evidências que apóiam essa hipótese, tais como o fato de as mitocôndrias apresentarem material genético mais parecido com a das bactérias do que com a das células eucariontes em que se encontram.
|
O mesmo ocorre com relação a maquinaria para a síntese de proteínas: os ribossomos mitocondriais são muito semelhantes aos das bactérias e bem diferentes dos ribossomos presentes no citoplasma das células eucariontes.
Plastos
Classificação e estrutura dos plastos
Plastos são orgânulos citoplasmáticos encontrados nas células de plantas e de algas. Sua forma e tamanho variam conforme o tipo de organismo. Em algumas algas, cada célula possui um ou poucos plastos, de grande tamanho e formas características. Já em outras algas e nas plantas em geral, os plastos são menores e estão presentes em grande número por célula.
Os plastos podem ser separados em duas categorias:
- cromoplastos (do grego chromos, cor), que apresentam pigmentos em seu interior. O cromoplasto mais freqüente nas plantas é o cloroplasto, cujo principal componente é a clorofila, de cor verde. Há também plastos vermelhos, os eritroplastos (do grego eritros, vermelho), que se desenvolvem, por exemplo, em frutos maduros de tomate.
- leucoplastos (do grego leukos, branco), que não contêm pigmentos.
Cloroplastos
Os cloroplastos são orgânulos citoplasmáticos discóides que se assemelham a uma lente biconvexa com cerca de 10 micrometros de diâmetro. Eles apresentam duas membranas envolventes e inúmeras membranas internas, que formam pequenas bolsas discoidais e achatadas, os tilacóides (do gregothylakos, bolsa).
Os tilacóides se organizam uns sobre os outros, formando estruturas cilíndricas que lembram pilhas de moedas. Cada pilha é um granum, que significa grão, em latim (no plural, grana).
O espaço interno do cloroplasto é preenchido por um fluido viscoso denominado estroma, que corresponde à matriz das mitocôndrias, e contém, como estas, DNA, enzimas e ribossomos.
As moléculas de clorofila ficam dispostas organizadamente nas membranas dos tilacóides, de modo a captarem a luz solar com a máxima eficiência.
Funções do cloroplasto
Se as mitocôndrias são as centrais energéticas das células, os cloroplastos são as centrais energéticas da própria vida. Eles produzem moléculas orgânicas, principalmente glicose, que servem de combustível para as mitocôndrias de todos os organismos que se alimentam, direta ou indiretamente, das plantas.
Os cloroplastos produzem substâncias orgânicas através do processo de fotossíntese. Nesse processo, a energia luminosa é transformada em energia química, que fica armazenada nas moléculas das substâncias orgânicas fabricadas. As matérias-primas empregadas na produção dessas substâncias são, simplesmente, gás carbônico e água.
Durante a fotossíntese, os cloroplastos também produzem e liberam gás oxigênio (O2), necessário à respiração tanto de animais quanto de plantas. Os cientistas acreditam que praticamente todo o gás oxigênio que existe hoje na atmosfera terrestre tenha se originado através da fotossíntese.
Como surgem os plastos
Os plastos surgem, basicamente, a partir de estruturas citoplasmáticas denominadas proplastos, pequenas bolsas esféricas, com cerca de 0,2 micrometros de diâmetro, delimitadas por duas membranas. No interior dos proplastos existem DNA, enzimas e ribossomos, mas não há tilacóides nem clorofila. Os proplastos são capazes de se dividir e são herdados de geração em geração celular, transmitindo-se de pais para filhos pelos gametas.
Origem dos cloroplastos
Nas células vegetais que ficam expostas à luz, como as das folhas, por exemplo, os proplastos crescem e se transformam em cloroplastos. A necessidade de luz para a sua formação explica porque não existem cloroplastos nas células das partes não iluminadas das plantas, como as das raízes ou as das partes internas dos caules. Se deixarmos uma semente germinar no escuro, as folhas da planta recém nascida serão amareladas, e em suas células não serão encontrados cloroplastos maduros, mas sim estioplasto.
Cloroplasto e Estioplasto
Amiloplastos ou grãos de amido
Em certas situações, os cloroplastos ou os leucoplastos podem acumular grandes quantidades de amido, um polissacarídeo sintetizado a partir da glicose. O amido pode ocupar totalmente o interior da organela, que se transforma em uma estrutura conhecida como amiloplasto ou grão de amido. Os amiloplastos são grandes reservatórios de amido, que em momentos de necessidade (se faltar glicose) pode se reconvertida em glicose e utilizado.
Amiloplasto
A capacidade de multiplicação dos plastos e suas semelhanças bioquímicas com os seres procariontes atuais sugerem que essas organelas tiveram como ancestrais bactérias fotossintetizantes primitivas, que há centenas de milhões de anos estabeleceram uma relação de cooperação com células eucariontes. No decorrer do processo evolutivo, a dependência entre os dois tipos de organismos teria se tornado tão grande que as bactérias fotossintetizantes e a célula eucarionte hospedeira perderam a capacidade de viver isoladamente.
0 Comentários