Equação reduzida da Circunferência
Circunferência é o conjunto de todos os pontos de um plano equidistantes de um ponto fixo, desse mesmo plano, denominado centro da circunferência:
Assim, sendo C(a, b) o centro e P(x, y) um ponto qualquer da circunferência, a distância de C aP(dCP) é o raio dessa circunferência. Então:
Portanto, (x - a)2 + (y - b)2 =r2 é a equação reduzida da circunferência e permite determinar os elementos essenciais para a construção da circunferência: as coordenadas do centro e o raio.
Observação: Quando o centro da circunfer6encia estiver na origem ( C(0,0)), a equação da circunferência será x2 + y2 = r2 .
Equação geral da Circunferência
Desenvolvendo a equação reduzida, obtemos a equação geral da circunferência:
Posições relativas entre ponto e circunferência
Em relação à circunferência de equação ( x - a )2 + ( y - b )2 = r2, o ponto P(m, n) pode ocupar as seguintes posições:
a) P é exterior à circunferência:
b) P pertence à circunferência:
c) P é interior à circunferência:
Assim, para determinar a posição de um ponto P(m, n) em relação a uma circunferência, basta substituir as coordenadas de P na expressão ( x - a )2 + ( y - b )2 - r2
|
0 Comentários